SV-441 Total No. of Pages : 2

S.E. (ETC) (Part - II) (Semester - IV) (Revised) Examination, May -2019 LINEAR INTERGRATED CIRCUITS Sub. Code : 63467

Day and Date : Thursday, 16 - 05 - 2019 Time : 2.30 p.m. to 5.30 p.m. **Total Marks : 100**

Instructions :1)All questions are compulsory.2)Figures to the right indicates full marks.

SECTION - I

Q1) Attempt any Two.

Seat No.

- a) Draw AC equivalent circuit for DIBO-DA. Derive expression for Ri and Ro.
- b) Explain any four ideal and practical parameters of Op amp.
- c) With neat circuit diagram explain Instrumentation Amplifier using three op amp. Derive the expression for voltage gain for the same.

Q2) Attempt any two.

- a) Discuss any two methods of frequency compensation used in op amp.
- b) Explain open loop and closed loop configuration of op amp.
- c) Draw and explain peak detector in details.

Q3) Write short notes on any three.

- a) IC CA3140
- b) Thermal Drift
- c) Current mirror circuits
- d) Sample & Hold Circuits

304-8340 P.T.O.

 \mathcal{O}

[2×8=16]

[2×8=16]

[3×6=18]

[2×8=16]

SECTION - II

Q4) Attempt any two.

- With neat circuit diagram explain Wide Band Reject Filter with its a) frequency response.
- Design second order low pass butterworth filter with higher cut off b) frequency of 2KHz. Draw the design circuit diagram and sketch its frequency response. Assume C = 0.01 uf and pass band gain = 1.586.
- With neat diagram explain Timer IC 555. c)
- **Q5)** Attempt any two.
 - With neat circuit diagram explain Hartley and Colpitts oscillator using a) Op amp.
 - Explain triangular wave generator with waveform. b)
 - Explain with neat diagram and waveform use of IC 555 as monostable c) multivibrator. [3×6=18]
- Q6) Write short notes on any three.
 - a) IC OP 177 op amp
 - IC 565 PLL b)
 - RC phase shift oscillator c)
 - Chebyshev filter d)

* * *

[2×8=16]

-2-

S.E. (ETC) (Semester - IV) Examination, May - 2019 ELECTROMAGNETICS ENGINEERING Sub. Code : 63469

Day and Date : Wednesday, 22 - 05 - 2019 Time : 2.30 p.m. to 5.30 p.m. **Total Marks : 100**

- Instructions : 1) All Questions are compulsory.
 - 2) Neat diagrams must be drawn wherever necessary.
 - 3) Make suitable assumptions if necessary and state it clearly.

SECTION-I

Q1) Solve any two.

Seat No.

a) A point charge $Q_1 = 2$ mC is located in free space at $P_1(-3,7,4)$ while $Q_2 = 5$ mC is at $P_2(2,4,-1)$. Find $F_2 \& F_1$.

b) A uniform line charge, $P_1 = 25$ nC/m lies on the line X = -3, Z = 4 in free space. Find E in Cartesian components at Origin

c) Find the gradient of the function A given $A = \cosh xyz$.

Q2) Solve any two.

- a) Evaluate work done in bringing a charge of μ C from origin to P(2,-1,4) through field E = $2xyz \ a_x + x^2z \ a_y + x^2ya_z$ (V/m) through the line path, straight line segments (0, 0, 0) to (2, 0, 0) to (2, -1,0) to (2, -1,4).
- b) Explain electric flux density D for point charge, line charge and surface charge.
- c) Evaluate Electric field intensity due to infinite line charge.

[2×8=16]

 $[2 \times 8 = 16]$

[3×6=18]

 $[2 \times 8 = 16]$

[2×8=16]

Q3) Solve any three.

- a) What is polarization in dielectric?
- b) Explain the Cylindrical coordinate system.
- c) Write a note on boundary condition for dielectric dielectric interface.
- d) Explain method of image for line charge.

SECTION-II

Q4) Solve any two.

- a) Derive Maxwell's equation in point form.
- b) State and explain Stoke's Theorem in Cartesian, Cylindrical and spherical co-ordinate system.
- c) A plane wave travelling in air is normally incident on a block of a paraffin with $\varepsilon_r = 2.2$. Find Γ_R and Γ_T
- Q5) Solve any two.
 - a) A plane electromagnetic wave travelling in the +z direction in an unbounded lossless dielectric medium $\varepsilon_r = 3$ $\mu = 1$ has peak electric intensity E of 6V/m Find
 - i) The velocity of wave
 - ii) The intrinsic impedance of the wave
 - iii) Te peak value of the magnetic field intensity H.
 - b) Estimate the incremental field dH_2 at point P_2 caused by a source at P_1 of $I_1 dL_1$ $2\pi a_z - mt$, given $P_1(4,0,0) \& P_2(0,3,0)$

c) Derive magnetic field intensity due to infinite long straight filament.

SV - 443

[3×6=18]

Q6) Solve any three.

- a) Derive transmission line equation.
- b) State and explain wavelength, velocity of propagation and group velocity.
- c) A lossless transmission line is 80 cm long and operates at a frequency of 600 MHz. The line parameters are L = 0.25 μ H/m and C = 100 pF/m. Find the characteristic impedance, the phase constant and the phase velocity.
- d) An infinite long current filament is placed along z-axis. The magnetic field intensity at point P (3, 4, 0) is $I_0 (-0.8a_x + 0.6a_y) A/m$. Find the current trough the filament.

-3-

Day and Date : Tuesday, 07 - 05 - 2019 Time : 10.00 a.m. to 1.00 p.m.

Total Marks : 100

Instructions: 1) Figures to the right indicates full marks.

2) All questions are compulsory.

SECTION - I

Q1) Solve any two.

a) Determine current in 5Ω resistor for network shown in figure

- b) Write a note on tree, co -tree, twigs and links
- c) Derive star -delta transformations.
- Q2) Solve any two

[16]

[16]

a) Use Thevenin's theorem to find the current in 3Ω resistor for the circuit shown in figure.

Replace the given network shown in figure by a single current source in **b**) parallel with a resistance.

- c) State and explain Millman's Theorem
- Q3) Solve any two
 - a) Derive series connection of two port network.
 - b) Find ABCD-Parameter for the following Circuit

c) Explain short circuit admittance parameter.

<u>SECTION - II</u>

Q4) Solve any two

- Derive expression of resonance frequency for parallel resonance. a)
- b) Show that BW = (fr/Q) for series RLC. Calculate f0, f1 and f2 for series RLC having 50 Ω resistance, 0.2H inductance and 10 μ F capacitance with an applied voltage of 20V.
- c) Obtain the expression for frequency at which the maximum voltage across SUK-W2H the inductor in series RLC.

[18]

[18]

- Q5) Solve any two
 - a) Design constant k type low pass filter (T and π -section) having design impedance of 600 Ω and cutoff frequency is 1.5kHz.
 - b) Derive expressions of Z_{OT} and $Zo\pi$ for filters.
 - c) Design m-derived high pass filter (T and π -section) having design impedance of 600 Ω and cutoff frequencies are 10kHz and m = 0.3.
- **Q6)** Solve any two
 - a) Explain DC voltage response for RC circuit.
 - b) Write short note on sinusoidal voltage response for RL circuit.
 - c) For the following Fig. 6. C capacitor has initial voltage Vc (-0) = 10V at the same instant current through inductor is zero, switch k is closed at t = 0. Find V(t) across the inductor.

Х Х Х

-3-

[16]

S.E. (Electronics and Telecommunication Engineering) (Part - II) (Semester - III) Examination, April - 2019 ENGINEERING MATHEMATICS - III Sub. Code: 63460

Day and Date : Friday, 26 - 04 - 2019 Time : 10.00 a.m. to 1.00 p.m.

Instructions : 1) All questions are compulsory.

- 2) Figures to the right indicate full marks.
- 3) Use of non-programmable calculator is allowed.

SECTION-I

Q1) Solve any three of the following.

a) $(2D^2 + 5D - 3)y = \cos x$. [6] b) $(D^2 - 3D + 2)y = 5xe^x$. [6]

c)
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = x^2 + 5.$$
 [6]

d)
$$(2D^2 + 5D)y = 3x^2 + 2x + 1$$
 [6]

Q2) Solve any two of the following.

a) Find Fourier series for $f(x) = x^2$ in $(0, 2\pi)$ Hence deduce that

$$\frac{\pi^2}{3} = -\left\{\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots\right\}.$$
[8]

b) Find Fourier series for $f(x) = e^{-x}$ in the interval (0, 2) [8]

c) Obtain half range sine series for $f(x) = \cos x$ in the interval $(0, \pi)$. [8]

Seat No.

Total Marks : 100

[8]

Q3) Attempt any two of the following.

Find Fourier Transform of $f(x) = \frac{1}{2}$ $-1 \le x \le 1$ [8] a) 0 otherwise

Find Fourier Cosine Transform of $f(x) = e^{-x}$ and find f(x) by using b) inverse Cosine Fourier transform. [8]

Find finite Fourier Cosine Transform and its inverse of c) f(x) = 2x in 0 < x < 4.[8]

SECTION-II

Q4) Attempt any three of the following.

- Find the Laplace transform of the periodic a) function $f(t) = \frac{kt}{T}, 0 < t < T, f(t+T) = f(t).$
- Find the Laplace transform of $\sin \sqrt{t}$, hence find Laplace transform of b) $\cos \sqrt{t}$ $2\sqrt{t}$

Find the inverse Laplace transform of $\frac{s+4}{(s^2+4) \cdot s(s-1)}$. c)

Using Laplace transform, solve $(D^2+2D+5)y = e^{-t} \sin t$ where y(0) = 0d) v'(0) = 1.

Q5) Attempt any two of the following.

c)

- Find the Z-transform of sin (3k+5), $k \ge 0$. a)
- Find the Z-transform of the following functions b)

i)
$$f(k) = 3(2^{k}) - 4 (3^{k}), k \ge 0$$

ii) $f(k) = a^{|k|}$
Find the inverse Z- transform of $\frac{2z^{2} - 10z + 13}{(z-3)^{2}(z-2)}, 2 < |z| < 3$.
-2-

[16]

[18]

- **Q6)** Attempt any two of the following.
 - a) A vector field \overline{F} is given by $\overline{F} = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^2)k$. Prove that it is irrotational and hence find its scalar potential.
 - b) Find the constants *a* and *b* so that the surface $ax^2-2byz = (a+4)x$ will be orthogonal to the surface $4x^2y+z^3 = 4$ at (1,-1, 2).
 - c) Show that $\nabla \left[\frac{(\overline{a}.\overline{r})}{r^n}\right] = \frac{\overline{a}}{r^n} \frac{n(\overline{a}.\overline{r})\overline{r}}{r^{n+2}}$, Where $\overline{r} = xi + yj + zk$ and $\overline{a} = a_1i + a_2j + a_3k$.

SV-439 Total No. of Pages : 2

S.E. (E&TC) (Part - II) (Semester - III) (Revised) Examination, May -2019 TRANSDUCERS & MEASUREMENT Sub. Code : 63464

Day and Date : Thursday, 09 - 05 - 2019 Time : 10.00 a.m. to 1.00 p.m. **Total Marks : 100**

Instructions : 1) All questions are compulsory.

2) Figures to the right indicates full marks.

SECTION - I

Q1) Attempt any Two.

Seat No.

- a) Define transducer. Explain the various factors for the selection of a tranducer for a specific application.
- b) Explain the practical instrumentation auplifier used for teupecature control in detail.
- c) Draw the block diagram of instrumentation system and explain each block in brief.

Q2) Attempt Any Two.

- a) With the help of principle, construction and working explain the electromagnetic flowmeter.
- b) Explain with the help of neat diagram the motion transducer write the advantages and disadvantages.
- c) Explain phototransistor with the help of symbol. Construction, working and applications.

Q3) Write short notes on (any three):

- a) Active band stop filter.
- b) Primary and secondary transducer.
- c) Active and passive instruments.
- d) Basic grounding methods.

304-1571 P.T.O.

[16]

[16]

[18]

[16]

SECTION - II

Q4) Solve any two

- a) With block schematic & wave forms explain integrating type digital voltmeter.
- b) Explain different parts of Basic CRO with block schematic.
- c) Explain the static and Dynamic characteristics of on Instrument.
- Q5) Solve any Two.
 - a) A sample of insulation was placed in arm AB of schering bridge, when bridge was balanced at a frequency of 50Hz, then other arms of bridge were as follows

Arm BC – a non-inductive R of 100/-

Arm CD – non-inductive R of 300/- in parallel with capacitor of 0.5 uf Arm DA – a loss free capacitor of 100 Pf.

Find capacitance, equivalent series resistance, & PF of insulation in test Arm AB.

- b) Explain measurement of frequency & phase using Lissajous pattern.
- c) Derive expression for frequency of an wien Bridge.

Q6) Write short note on (Any three)

- a) Logic Analyzer
- b) Maxwell wien bridge
- c) CRO Probes
- d) Digital measurement of time.

* * * SUKASTAA -2-

SUKISTAA

[16]

[18]

SV - 442 **Total No. of Pages : 2**

S.E. (Electronics & Telecommunication) (Semester - IV) (New) (Revised) Examination, May - 2019 DATA STRUCTURE Sub. Code : 63468

Day and Date : Monday, 20 - 05 - 2019 Time : 2.30 p.m. to 5.30 p.m.

- **Instructions** : 1) All questions are compulsory.
 - 2) Figures to the right indicate full marks.
 - 3) Assume suitable data if necessary.

SECTION - I

Q1) Solve any two from three:

- What is Binary Search method? Write C code for binary Search Algorithm. a)
- Describe with 'C' code deletion of nodes from linked list. b)
- Translate, by inspection, each infix expression to the corresponding c) postfix and prefix expression.

i)
$$((A + B) * D)/(E - F)$$

ii) A + B/C * (D + E/F - G) + H

Q2) Solve any two from three:

- What is time space trade off? Explain with example. a)
- Define stack and explain its representation using Linked list. b)
- What is Multidimensional array? Explain the representation of Twoc) dimensional array in memory?

Q3) Solve any two from three:

- write 'C' code for a)
 - Removing element from Queue i)
 - Inserting element into Queue ii)
- Explain term Garbage collection? Also explain overflow & underflow **b**) situations.
- What is Linked list? Explain different types of Link list. c)

P.T.O.

[16]

[18]

Total Marks : 100

Seat No.

[16]

[18]

SECTION - II

Q4) Solve any three.

a) Represent the following algebraic expression in tree structure

$$E = [a + (b-c)]^*[(d-e)/(f+g-h)]$$

b) Construct a binary tree from the given order.

Postorder: HIDEBJFKGCA Inorder : HDIBEAFJCGK

- c) Explain deletion of a node from binary tree
- d) Consider graph G in he figure below, Suppose the nodes are stored in an array in a memory as follows X,Y,Z,S,T then

- i) Find the adjacency matrix A of G.
- ii) Find the path matrix P of G.
- iii) If G strongly connected?

Q5) Solve any three.

- a) Write an algorithm for preorder traversal.
- b) Write short note on "Threaded Trees"
- c) Write short note on topological sorting.
- d) Explain depth first algorithm.

Q6) Solve any two from three.

a) Write an algorithm for post order traversal using stacks.

0

- b) Explain insertion in m-way search tree with proper example.
- c) Explain construction heap tree with example.

[16]

[16]

-2-

0

Total Marks : 100

S.E. (ETC) (Part - II) (Semester - IV) Examination, May - 2019 ANALOG COMMUNICATION SYSTEM Sub. Code: 63470

Day and Date : Friday, 24- 05 - 2019 Time : 2.30 p.m. to 5.30 p.m.

Instructions : 1) All questions are compulsory.

- 2) Assume suitable data, if required.
- 3) Figures to the right indicate full marks.

SECTION - I

Q1) Solve any three :

Seat No.

- a) Draw and explain Trapezoidal patterns for AM.
- b) Draw and explain frequency spectrum and phase representation of AM wave.
- c) A carrier wave frequency of 10Mhz and peak value of 10V is applied and amplitude modulated by a 5Khz sine wave of amplitude 6V. Determine modulation index and sideband frequencies.
- d) Describe operation of phase shift method of SSB.

Q2) Solve any two :

- a) Explain concept of angle modulation with respect to FM.
- b) Comment on pre-emphasis and de-emphasis used in FM.
- c) Write note on indirect method of FM generation.

Q3) Solve any Two:

- a) Explain methods of tracking.
- b) Explain effect of AGC with characteristics
- c) Write note on image frequency and double spotting.

P.T.O.

[2×8]

[**3**×6]

[2×8]

SV-444

[2×8]

[2×8]

SECTION - II

Q4) Solve any two :

- a) Explain PLL-FM demodulator.
- b) Explain foster seeley discriminator.
- c) Explain in brief about noise figure, noise temperature, noise bandwidth, SNR.
- Q5) Solve any two :
 - a) Explain shot noise, thermal noise, avalanche noise, burst noise.
 - b) Write note on flat top sampling.
 - c) Write note on classification of noise.
- **Q6)** Solve any three
 - a) Explain PWM applications.
 - b) Compare PAM with PWM.
 - c) State and prove sampling theorem.
 - d) Explain PCM transmitter.

[3×6]

-2-

Seat No.				Т	SV - 437 otal No. of Pages : 2
S	S.E. (Ele (Sem	ectronics & lester - III DIGITA Su	z Telecomm) Examinat AL ELECTI 1b. Code : 634	unication) (l ion, May - 2 RONICS 462	Part - I) 2019
Day and Time : 1(Date : Sat 0.00 a.m. to	urday, 04 - 05 o 1.00 p.m.	- 2019		Total Marks : 100
Instructio	ons: 1) 2) 3)	All questions Figures to the Assume appr	are compulsory. e right indicate ful opriate data if nee	l marks. eded.	
Q1) Sol	ve any two	o of the follow	ving.		[16
a)	Design and implement half adder with truth table.				
b)	Design and implement one bit comparator.				
c) Give the specifications of digital IC's & explain propagation del					agation delay.
	W.	0.1 0.11			Wilk
(Q2) Sol	ve any two	of the follow	/ing. t 1 hit Dinomy to	Crow and a north	[16]
a) b)	Design and implement 4 on binary to Gray code converter.				
c) Design following logic function using 16.1MUX with truth					with truth table
•)	$F = \sum m$	e(0,1,4,8,9,12,	13,14).		
Q3) Sol	ve any two	o of the follow	ving.		[18]
a) Evaluate & minimize following expression using k-map					ар
	F(ABCI	$D) = \sum m(0, 1, 4)$	+,5,6,7,9,11,15)+	d(10,14).	
b)	Design d	& implement	4 bit comparator	using IC7485.	0
c)	Explain	multiplexer IC	2 74151.		1-A110-

P.T.O.

- Q4) Attempt any three.
 - a) With suitable logic diagram and truth table explain SR flip flop with preset and clear inputs.
 - b) Explain serial in serial out 4-bit shift register. Draw waveforms also.
 - c) Write excitation table for SR, D and JK flip flop.
 - d) Explain 3-bit ripple down counter with suitable state diagram and truth table.
- Q5) Attempt any two.
 - a) Explain effect of clock skew and clock jitter on synchronous designs.

G

- b) Explain sequence detector with suitable example.
- c) Differentiate between Mealy & Moore machine.

Q6) Attempt any two.

- a) Explain classification of memories in detail.
- b) Realize JK flip flop using SR flip flop.
- c) Explain Static and Dynamic RAM cell.

 \bigcirc

SUK-A1166

[18]

[16]

[16]

SV-440

Total No. of Pages : 2

S.E. (E & TC) (Part - II) (Semester - IV) Examination, May - 2019 ANALOG CIRCUITS - II Sub. Code: 63466

Day and Date : Tuesday, 14- 05 - 2019 Time : 2.30 p.m. to 5.30 p.m. **Total Marks : 100**

[16]

[16]

- Instructions : 1) All questions are compulsory.
 - 2) Assume suitable data, if required.
 - 3) Figures to the right indicate full marks.

SECTION - I (A)

Q1) Attempt any two :

Seat No.

- a) Design two stage direct amplifier with transistor specification Q_1 and Q_2 . hfe = 100, $I_{C(max)} = 100$ mA, $V_{CE(max)} = 30$ V, $V_{O(p-p)} = 5$ V, $R_L = 10$ k Ω , V_{CC} = 24 V, s = 5
- b) Derive the parameter equations such as Ri, Ro, Av and Ai for voltage series negative feedback.
- c) Design current series negative amplifier for following specifications : V_{cc} = 12V, Av = 30, S = 10, use transistor BC147A.

Q2) Attempt any two :

a) Design two stage common emitter amplifier to provide the following specification.

VCC = 10v, VO = 3V (rms), AVF \ge 100, RS = 600 Ω , RL = 1 k Ω , f = 20Hz-20 kHz, use transistor BC147B

- b) Design class AB push-pull amplifier for following specifications : Po = 400mW, loud speaker impedance = 6Ω , V_{CC} = 12V
- c) Design class A push-pull amplifier for following specifications : Po = 500mW, loud speaker impedance = 8Ω , $V_{CC} = 12V$

P.T.O.

SV-440

sut.

[18]

[16]

[16]

[18]

- Q3) Write note on any three
 - a) 3 point method of calculating harmonic distortion of power amplifier.
 - b) Complementary symmetry power amplifier
 - c) Types of negative feedback
 - d) Classification of Power Amplifiers

SECTION - II (B)

- Q4) Attempt any two :
 - a) Derive the expression for frequency of oscillation for Wein Bridge Oscillator.
 - b) Design Hartley's Oscillator with following data $V_0 = 6V (p-p)$, Fo=2MHz, S=9.Transistor Data, PD = 0.2 W, VCE (max) = 40V, hfe = 110, hie = 2.7K Ω , IC (max.) = 0.1A
 - c) Design RC phase shift oscillator for following data, Fo=2.5KHz, IC (sat.) = 4.5mA, hfe=50, hie = 4.5KΩ, S=10.

Q5) Attempt any two :

- a) Design astable multivibrator for symmetric square wave with following data, Frequency = 500Hz ,Vo = 12V, hfe(min) = 50, VBE(sat.) = VCE (sat.) = 0V, IC (sat.) = 6mA.
- b) Design power supply using LM 317 for following data VO = 8 to 10V at 100mA current, and Input voltage in the range of 20V to 24V.
- c) Design Monostable multivibrator for following data, TP=2.5ms, VCC=10V, VBB= -2V, VCE (sat.) = 0.7V, IC(sat)=5mA, C1=0.3µF, hfe(min)=40.
- Q6) Write note on any three
 - a) IC 723.
 - b) Barkhausen's criteria.
 - c) Schmitt Trigger.

SULIO

d) Transistor switching parameters.

-2-