S.E. (ETC) (Part - II) (Semester - IV) (Revised) Examination, May -2019
 LINEAR INTERGRATED CIRCUITS
 Sub. Code : 63467

Day and Date : Thursday, 16-05-2019
Total Marks : 100
Time : 2.30 p.m. to 5.30 p.m.
Instructions: 1) All questions are compulsory.
2) Figures to the right indicates full marks.

SECTION - I

Q1) Attempt any Two.
a) Draw AC equivalent circuit for DIBO-DA. Derive expression for Ri and Ro.
b) Explain any four ideal and practical parameters of Op amp.
c) With neat circuit diagram explain Instrumentation Amplifier using three op amp. Derive the expression for voltage gain for the same.

Q2) Attempt any two.
a) Discuss any two methods of frequency compensation used in op amp.
b) Explain open loop and closed loop configuration of op amp.
c) Draw and explain peak detector in details.

Q3) Write short notes on any three.
a) IC CA3140
b) Thermal Drift
c) Current mirror circuits
d) Sample \& Hold Circuits

SECTION - II

Q4) Attempt any two.
[$2 \times 8=16$]
a) With neat circuit diagram explain Wide Band Reject Filter with its frequency response.
b) Design second order low pass butterworth filter with higher cut off frequency of 2 KHz . Draw the design circuit diagram and sketch its frequency response. Assume C $=0.01$ uf and pass band gain $=1.586$.
c) With neat diagram explain Timer IC 555 .

Q5) Attempt any two.
[$2 \times 8=16$]
a) With neat circuit diagram explain Hartley and Colpitts oscillator using Op amp.
b) Explain triangular wave generator with waveform.
c) Explain with neat diagram and waveform use of IC 555 as monostable multivibrator.

Q6) Write short notes on any three.
a) IC OP 177 op amp
b) IC 565 PLL
c) RC phase shift oscillator
d) Chebyshev filter

* * *

S.E. (ETC) (Semester - IV) Examination, May - 2019 ELECTROMAGNETICS ENGINEERING

 Sub. Code : 63469Day and Date : Wednesday, 22-05-2019
Total Marks : 100
Time : 2.30 p.m. to 5.30 p.m.
Instructions: 1) All Questions are compulsory.
2) Neat diagrams must be drawn wherever necessary.
3) Make suitable assumptions if necessary and state it clearly.

SECTION-I

Q1) Solve any two.
a) A point charge $Q_{1}=2 \mathrm{mC}$ is located in free space at $P_{1}(-3,7,4)$ while $Q_{2}=5 \mathrm{mC}$ is at $P_{2}(2,4,-1)$. Find $F_{2} \& F_{1}$.
b) A uniform line charge, $P_{1}=25 \mathrm{nC} / \mathrm{m}$ lies on the line $\mathrm{X}=-3, \mathrm{Z}=4$ in free space. Find E in Cartesian components at Origin
c) Find the gradient of the function A given $A=\cosh x y z$.

Q2) Solve any two.
a) Evaluate work done in bringing a charge of $\mu \mathrm{C}$ from origin to $\mathrm{P}(2,-1,4)$ through field $\mathrm{E}=2 x y z a_{x}+x^{2} z a_{y}+x^{2} y a_{z}(\mathrm{~V} / \mathrm{m})$ through the line path, straight line segments $(0,0,0)$ to $(2,0,0)$ to $(2,-1,0)$ to $(2,-1,4)$.
b) Explain electric flux density D for point charge, line charge and surface charge.
c) Evaluate Electric field intensity due to infinite line charge.

Q3) Solve any three.
a) What is polarization in dielectric?
b) Explain the Cylindrical coordinate system.
c) Write a note on boundary condition for dielectric - dielectric interface.
d) Explain method of image for line charge.

SECTION-II

Q4) Solve any two.
a) Derive Maxwell's equation in point form.
b) State and explain Stoke's Theorem in Cartesian, Cylindrical and spherical co-ordinate system.
c) A plane wave travelling in air is normally incident on a block of a paraffin with $\varepsilon_{r}=2.2$. Find Γ_{R} and Γ_{T}

Q5) Solve any two.
a) A plane electromagnetic wave travelling in the $+z$ direction in an unbounded lossless dielectric medium $\varepsilon_{r}=3 \mu=1$ has peak electric intensity E of $6 \mathrm{~V} / \mathrm{m}$ Find
i) The velocity of wave
ii) The intrinsic impedance of the wave
iii) Te peak value of the magnetic field intensity H .
b) Estimate the incremental field $d H_{2}$ at point P_{2} caused by a source at P_{1} of $I_{1} d L_{1}$
$2 \pi a_{z}-m t$, given $P_{1}(4,0,0) \& P_{2}(0,3,0)$
c) Derive magnetic field intensity due to infinite long straight filament.

Q6) Solve any three.
$[3 \times 6=18]$
a) Derive transmission line equation.
b) State and explain wavelength, velocity of propagation and group velocity.
c) A lossless transmission line is 80 cm long and operates at a frequency of 600 MHz . The line parameters are $\mathrm{L}=0.25 \mu \mathrm{H} / \mathrm{m}$ and $\mathrm{C}=100 \mathrm{pF} / \mathrm{m}$. Find the characteristic impedance, the phase constant and the phase velocity.
d) An infinite long current filament is placed along z -axis. The magnetic field intensity at point $\mathrm{P}(3,4,0)$ is $\mathrm{I}_{0}\left(-0.8 a_{x}+0.6 a_{y}\right) \mathrm{A} / \mathrm{m}$. Find the current trough the filament.

S.E. (ETC) (Part - II (Semester - III)
 Examination, May - 2019 NETWORK ANALYSIS
 Sub. Code : 63463

Day and Date: Tuesday, 07-05-2019
Total Marks : 100 Time : 10.00 a.m. to 1.00 p.m.

Instructions: 1) Figures to the right indicates full marks.
2) All questions are compulsory.

SECTION - I

Q1) Solve any two.
a) Determine current in 5Ω resistor for network shown in figure

b) Write a note on tree, co -tree, twigs and links
c) Derive star-delta transformations.

Q2) Solve any two
a) Use Thevenin's theorem to find the current in 3Ω resistor for the circuit shown in figure.

b) Replace the given network shown in figure by a single current source in parallel with a resistance.

c) State and explain Millman's Theorem

Q3) Solve any two
a) Derive series connection of two port network.
b) Find ABCD-Parameter for the following Circuit

c) Explain short circuit admittance parameter.

SECTION - II

Q4) Solve any two
a) Derive expression of resonance frequency for parallel resonance.
b) Show that $\mathrm{BW}=(\mathrm{fr} / \mathrm{Q})$ for series RLC. Calculate $\mathrm{f} 0, \mathrm{f} 1$ and f 2 for series RLC having 50Ω resistance, 0.2 H inductance and $10 \mu \mathrm{~F}$ capacitance with an applied voltage of 20 V .
c) Obtain the expression for frequency at which the maximum voltage across the inductor in series RLC.

Q5) Solve any two
a) Design constant k type low pass filter (T and π-section) having design impedance of 600Ω and cutoff frequency is 1.5 kHz .
b) Derive expressions of $\mathrm{Z}_{\text {от }}$ and $\mathrm{Zo} \pi$ for filters.
c) Design m-derived high pass filter (T and π-section) having design impedance of 600Ω and cutoff frequencies are 10 kHz and $\mathrm{m}=0.3$.

Q6) Solve any two
a) Explain DC voltage response for RC circuit.
b) Write short note on sinusoidal voltage response for RL circuit.
c) For the following Fig. 6. C capacitor has initial voltage $\mathrm{Vc}(-0)=10 \mathrm{~V}$ at the same instant current through inductor is zero, switch k is closed at $t=0$. Find $V(t)$ across the inductor.

Fig. 6 C

S.E. (Electronics and Telecommunication Engineering) (Part - II) (Semester - III) Examination, April - 2019 ENGINEERING MATHEMATICS - III

Sub. Code: 63460

Day and Date : Friday, 26-04-2019
Total Marks : 100
Time : 10.00 a.m. to $\mathbf{1 . 0 0}$ p.m.
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of non-programmable calculator is allowed.

SECTION-I

Q1) Solve any three of the following.
a) $\left(2 D^{2}+5 D-3\right) y=\cos x$.
b) $\left(D^{2}-3 D+2\right) y=5 x e^{x}$.
c) $\quad x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=x^{2}+5$.
d) $\left(2 D^{2}+5 D\right) y=3 x^{2}+2 x+1$

Q2) Solve any two of the following.
a) Find Fourier series for $f(x)=x^{2}$ in $(0,2 \pi)$ Hence deduce that

$$
\begin{equation*}
\frac{\pi^{2}}{3}=-\left\{\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots \ldots\right\} . \tag{8}
\end{equation*}
$$

b) Find Fourier series for $f(x)=e^{-x}$ in the interval $(0,2)$
c) Obtain half range sine series for $f(x)=\cos x$ in the interval $(0, \pi)$.

Q3) Attempt any two of the following.
a) Find Fourier Transform of $f(x)=\frac{1}{2} \quad \begin{array}{rr}-1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{array}$
[8]
b) Find Fourier Cosine Transform of $f(x)=e^{-x}$ and find $f(x)$ by using inverse Cosine Fourier transform.
[8]
c) Find finite Fourier Cosine Transform and its inverse of $f(x)=2 x$ in $0<x<4$.
[8]

SECTION-II

Q4) Attempt any three of the following.
a) Find the Laplace transform of the periodic function $f(t)=\frac{k t}{T}, 0<t<T, f(t+T)=f(t)$.
b) Find the Laplace transform of $\sin \sqrt{t}$, hence find Laplace transform of $\frac{\cos \sqrt{t}}{2 \sqrt{t}}$.
c) Find the inverse Laplace transform of $\frac{s+4}{\left(s^{2}+4\right) s(s-1)}$.
d) Using Laplace transform, solve $\left(\mathrm{D}^{2}+2 \mathrm{D}+5\right) y=e^{-t} \sin t$ where $y(0)=0$ $y^{\prime}(0)=1$.

Q5) Attempt any two of the following.
a) Find the Z -transform of $\sin (3 \mathrm{k}+5), \mathrm{k} \geq 0$.
b) Find the Z -transform of the following functions
i) $\quad f(k)=3\left(2^{k}\right)-4\left(3^{k}\right), \mathrm{k} \geq 0$
ii) $f(k)=a^{k \mid}$
c) Find the inverse Z- transform of $\frac{2 z^{2}-10 z+13}{(z-3)^{2}(z-2)}, 2<|z|<3$.

Q6) Attempt any two of the following.
a) A vector field \bar{F} is given by $\bar{F}=(y \sin z-\sin x) i+(x \sin z+2 y z) j+\left(x y \cos z+y^{2}\right) k$. Prove that it is irrotational and hence find its scalar potential.
b) Find the constants a and b so that the surface $a x^{2}-2 b y z=(a+4) x$ will be orthoganal to the surface $4 x^{2} y+z^{3}=4$ at $(1,-1,2)$.
c) Show that $\nabla\left[\frac{(\bar{a} \cdot \bar{r})}{r^{n}}\right]=\frac{\bar{a}}{r^{n}}-\frac{n(\bar{a} \cdot \bar{r}) \bar{r}}{r^{n+2}}$, Where $\bar{r}=x i+y j+z k \quad$ and $\bar{a}=a_{1} i+a_{2} j+a_{3} k$.

$$
\text { * }{ }_{4}^{*}
$$

S.E. (E\&TC) (Part - II) (Semester - III) (Revised) Examination, May -2019
 TRANSDUCERS \& MEASUREMENT

Sub. Code : 63464
Day and Date : Thursday, 09-05-2019
Total Marks : 100
Time : 10.00 a.m. to 1.00 p.m.
Instructions: 1) All questions are compulsory.
2) Figures to the right indicates full marks.

SECTION - I

Q1) Attempt any Two.
a) Define transducer. Explain the various factors for the selection of a tranducer for a specific application.
b) Explain the practical instrumentation auplifier used for teupecature control in detail.
c) Draw the block diagram of instrumentation system and explain each block in brief.

Q2) Attempt Any Two.
a) With the help of principle, construction and working explain the electromagnetic flowmeter.
b) Explain with the help of neat diagram the motion transducer write the advantages and disadvantages.
c) Explain phototransistor with the help of symbol. Construction, working and applications.

Q3) Write short notes on (any three):
a) Active band stop filter.
b) Primary and secondary transducer.
c) Active and passive instruments.
d) Basic grounding methods.

SECTION - II

Q4) Solve any two
a) With block schematic \& wave forms explain integrating type digital voltmeter.
b) Explain different parts of Basic CRO with block schematic.
c) Explain the static and Dynamic characteristics of on Instrument.

Q5) Solve any Two.
a) A sample of insulation was placed in arm AB of schering bridge, when bridge was balanced at a frequency of 50 Hz , then other arms of bridge were as follows
Arm BC - a non-inductive R of 100/-
Arm CD - non-inductive R of $300 /$ - in parallel with capacitor of 0.5 uf Arm DA - a loss free capacitor of 100 Pf.
Find capacitance, equivalent series resistance, \& PF of insulation in test Arm AB.
b) Explain measurement of frequency \& phase using Lissajous pattern.
c) Derive expression for frequency of an wien Bridge.

Q6) Write short note on (Any three)
a) Logic Analyzer
b) Maxwell - wien bridge
c) CRO - Probes
d) Digital measurement of time.

S.E. (Electronics \& Telecommunication) (Semester - IV) (New)
 (Revised) Examination, May - 2019
 DATA STRUCTURE
 Sub. Code : 63468

Day and Date : Monday, 20-05-2019
Total Marks : 100
Time : 2.30 p.m. to 5.30 p.m.
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume suitable data if necessary.

SECTION - I

Q1) Solve any two from three:
a) What is Binary Search method? Write C code for binary Search Algorithm.
b) Describe with ' C ' code deletion of nodes from linked list.
c) Translate, by inspection, each infix expression to the corresponding postfix and prefix expression.
i) $((\mathrm{A}+\mathrm{B}) * \mathrm{D}) /(\mathrm{E}-\mathrm{F})$
ii) $\mathrm{A}+\mathrm{B} / \mathrm{C} *(\mathrm{D}+\mathrm{E} / \mathrm{F}-\mathrm{G})+\mathrm{H}$

Q2) Solve any two from three:
a) What is time space trade off? Explain with example.
b) Define stack and explain its representation using Linked list.
c) What is Multidimensional array? Explain the representation of Twodimensional array in memory?

Q3) Solve any two from three:
a) write ' C ' code for
i) Removing element from Queue
ii) Inserting element into Queue
b) Explain term Garbage collection? Also explain overflow \& underflow situations.
c) What is Linked list? Explain different types of Link list.

SECTION - II

Q4) Solve any three.
a) Represent the following algebraic expression in tree structure $\mathrm{E}=[\mathrm{a}+(\mathrm{b}-\mathrm{c})]^{*}[(\mathrm{~d}-\mathrm{e}) /(\mathrm{f}+\mathrm{g}-\mathrm{h})]$
b) Construct a binary tree from the given order. Postorder: HIDEBJFKGCA Inorder : HDIBEAFJCGK
c) Explain deletion of a node from binary tree
d) Consider graph G in he figure below, Suppose the nodes are stored in an array in a memory as follows $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{S}, \mathrm{T}$ then

i) Find the adjacency matrix A of G .
ii) Find the path matrix P of G .
iii) If G strongly connected?

Q5) Solve any three.
a) Write an algorithm for preorder traversal.
b) Write short note on "Threaded Trees"
c) Write short note on topological sorting.
d) Explain depth first algorithm.

Q6) Solve any two from three.
a) Write an algorithm for post order traversal using stacks.
b) Explain insertion in m-way search tree with proper example.
c) Explain construction heap tree with example.

030

S.E. (ETC) (Part - II) (Semester - IV)
 Examination, May - 2019
 ANALOG COMMUNICATION SYSTEM

Sub. Code: 63470
Day and Date : Friday, 24-05-2019
Total Marks : 100
Time : 2.30 p.m. to 5.30 p.m.
Instructions: 1) All questions are compulsory.
2) Assume suitable data, if required.
3) Figures to the right indicate full marks.

SECTION - I

Q1) Solve any three :
a) Draw and explain Trapezoidal patterns for AM.
b) Draw and explain frequency spectrum and phase representation of AM wave.
c) A carrier wave frequency of 10 Mhz and peak value of 10 V is applied and amplitude modulated by a 5 Khz sine wave of amplitude 6 V . Determine modulation index and sideband frequencies.
d) Describe operation of phase shift method of SSB.

Q2) Solve any two :
a) Explain concept of angle modulation with respect to FM.
b) Comment on pre-emphasis and de-emphasis used in FM.
c) Write note on indirect method of FM generation.

Q3) Solve any Two:
a) Explain methods of tracking.
b) Explain effect of AGC with characteristics
c) Write note on image frequency and double spotting.

SECTION - II

Q4) Solve any two :
a) Explain PLL-FM demodulator.
b) Explain foster seeley discriminator.
c) Explain in brief about noise figure, noise temperature, noise bandwidth, SNR.

Q5) Solve any two :

a) Explain shot noise, thermal noise, avalanche noise, burst noise.
b) Write note on flat top sampling.
c) Write note on classification of noise.

Q6) Solve any three
a) Explain PWM applications.
b) Compare PAM with PWM.
c) State and prove sampling theorem.
d) Explain PCM transmitter.

Seat	
No.	

S.E. (Electronics \& Telecommunication) (Part - I)

(Semester - III) Examination, May - 2019 DIGITAL ELECTRONICS

Sub. Code : 63462
Day and Date : Saturday, 04-05-2019
Total Marks : 100
Time : $\mathbf{1 0 . 0 0}$ a.m. to 1.00 p.m.
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Assume appropriate data if needed.

Q1) Solve any two of the following.
a) Design and implement half adder with truth table.
b) Design and implement one bit comparator.
c) Give the specifications of digital IC's \& explain propagation delay.

Q2) Solve any two of the following.
a) Design and implement 4 bit Binary to Gray code converter.
b) Design 8:1 MUX using two 4:1 MUX.
c) Design following logic function using 16:1MUX with truth table $\mathrm{F}=\sum m(0,1,4,8,9,12,13,14)$.

Q3) Solve any two of the following.
a) Evaluate \& minimize following expression using k-map

$$
\mathrm{F}(\mathrm{ABCD})=\sum m(0,1,4,5,6,7,9,11,15)+d(10,14)
$$

b) Design \& implement 4 bit comparator using IC7485.
c) Explain multiplexer IC 74151.

Q4) Attempt any three.
a) With suitable logic diagram and truth table explain SR flip flop with preset and clear inputs.
b) Explain serial in serial out 4-bit shift register. Draw waveforms also.
c) Write excitation table for SR, D and JK flip flop.
d) Explain 3-bit ripple down counter with suitable state diagram and truth table.

Q5) Attempt any two.
a) Explain effect of clock skew and clock jitter on synchronous designs.
b) Explain sequence detector with suitable example.
c) Differentiate between Mealy \& Moore machine.

Q6) Attempt any two.
a) Explain classification of memories in detail.
b) Realize JK flip flop using SR flip flop.
c) Explain Static and Dynamic RAM cell.

00

S.E. (E \& TC) (Part - II) (Semester - IV)

Examination, May - 2019

ANALOG CIRCUITS - II

Sub. Code: 63466

Day and Date : Tuesday, 14-05-2019
Total Marks : 100
Time : 2.30 p.m. to 5.30 p.m.
Instructions: 1) All questions are compulsory.
2) Assume suitable data, if required.
3) Figures to the right indicate full marks.

SECTION - I (A)

Q1) Attempt any two :
a) Design two stage direct amplifier with transistor specification Q_{1} and Q_{2}. $\mathrm{hfe}=100, \mathrm{I}_{\mathrm{C}(\max)}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}(\max)}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}(p-\mathrm{p})}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}$ $=24 \mathrm{~V}, \mathrm{~s}=5$
b) Derive the parameter equations such as Ri, Ro, Av and Ai for voltage series negative feedback.
c) Design current series negative amplifier for following specifications: V_{CC} $=12 \mathrm{~V}, \mathrm{Av}=30, \mathrm{~S}=10$, use transistor BC 147 A .

Q2) Attempt any two:
a) Design two stage common emitter amplifier to provide the following specification.
$\mathrm{VCC}=10 \mathrm{v}, \mathrm{VO}=3 \mathrm{~V}(\mathrm{rms}), \mathrm{AVF} \geq 100, \mathrm{RS}=600 \Omega, \mathrm{RL}=1 \mathrm{k} \Omega$, $\mathrm{f}=20 \mathrm{~Hz}-20 \mathrm{kHz}$, use transistor BC 147 B
b) Design class AB push-pull amplifier for following specifications : Po $=400 \mathrm{~mW}$, loud speaker impedance $=6 \Omega, \mathrm{~V}_{\mathrm{CC}}=12 \mathrm{~V}$
c) Design class A push-pull amplifier for following specifications : Po $=500 \mathrm{~mW}$, loud speaker impedance $=8 \Omega, \mathrm{~V}_{\mathrm{CC}}=12 \mathrm{~V}$

Q3）Write note on any three
［18］
a） 3 point method of calculating harmonic distortion of power amplifier．
b）Complementary symmetry power amplifier
c）Types of negative feedback
d）Classification of Power Amplifiers

SECTION－II（B）

Q4）Attempt any two ：
a）Derive the expression for frequency of oscillation for Wein Bridge Oscillator．
b）Design Hartley＇s Oscillator with following data $V_{0}=6 \mathrm{~V}(p-p), \mathrm{Fo}=2 \mathrm{MHz}$ ， $\mathrm{S}=9$ ．Transistor Data， $\mathrm{PD}=0.2 \mathrm{~W}, \mathrm{VCE}(\max)=40 \mathrm{~V}$ ，hfe $=110$ ，hie $=$ $2.7 \mathrm{~K} \Omega$ ，IC（max．）$=0.1 \mathrm{~A}$
c）Design RC phase shift oscillator for following data， $\mathrm{Fo}=2.5 \mathrm{KHz}$ ，IC $($ sat．$)=4.5 \mathrm{~mA}, \mathrm{hfe}=50$, hie $=4.5 \mathrm{~K} \Omega, \mathrm{~S}=10$.

Q5）Attempt any two ：
［16］
a）Design astable multivibrator for symmetric square wave with following data，Frequency $=500 \mathrm{~Hz}, \mathrm{Vo}=12 \mathrm{~V}, \mathrm{hfe}(\mathrm{min})=50, \mathrm{VBE}(\mathrm{sat})=$. （sat．）$=0 \mathrm{~V}$ ，IC（sat．）$=6 \mathrm{~mA}$ ．
b）Design power supply using LM 317 for following data $\mathrm{VO}=8$ to 10 V at 100 mA current，and Input voltage in the range of 20 V to 24 V ．
c）Design Monostable multivibrator for following data， $\mathrm{TP}=2.5 \mathrm{~ms}, \mathrm{VCC}=10 \mathrm{~V}, \mathrm{VBB}=-2 \mathrm{~V}, \mathrm{VCE}(\mathrm{sat})=.0.7 \mathrm{~V}, \mathrm{IC}(\mathrm{sat})=5 \mathrm{~mA}$ ， $\mathrm{C} 1=0.3 \mu \mathrm{~F}, \mathrm{hfe}(\mathrm{min})=40$ ．

Q6）Write note on any three
a）IC 723 ．
b）Barkhausen＇s criteria．
c）Schmitt Trigger．
d）Transistor switching parameters．

暴潾粯

